Captain Webb Primary School Calculation Policy

This policy ensures that the teaching of calculation is consistent throughout the school.

The models and images outlined are progressive so that children can build on their prior knowledge.

This will ensure that children will acquire effective written and mental methods to allow them to access the wider maths curriculum.

Calculation Policy

This policy provides an overview of the strategies used in our school to teach Mathematics, specifically the four operations, as defined within the National Curriculum in England: Mathematics Programme of Study.

The progression of the four operations (+, -, x and ÷) are shown across each of the primary year groups 1 - 6. This is a guide since children progress at different rates. Teachers should model strategies appropriate to the ability of the children they teach, regardless of their year group, whilst striving to achieve age related expectations at the end of the academic year.

At Captain Webb Primary School, we believe that children should be introduced to the processes of calculation through the **concrete**, **pictorial** and **abstract** approach. Our children are introduced to calculation through practical activities, using **concrete** resources. As children develop their understanding of key concepts and mathematical models, they develop ways of recording to support their thinking. In the first instance, this recording takes the form of **pictorial** representations. Over time, children learn how to use models and images to support their mental and informal written methods of calculation.

As children become more proficient in their use of mental methods, their informal written methods also become more efficient. Some recording takes the form of jottings, which are used to support children's thinking. More **abstract**, formal written methods are taught only when the child is able to use a wide range of mental calculation strategies and these are always underpinned by **concrete** and **pictorial** experiences.

Our ultimate aim is for children to be able to select an efficient method to solve problems. Therefore, children will be encouraged to look at a calculation or problem and to determine the most appropriate method to choose – pictures, mental calculation with or without jottings or a formal, written method.

The end of year expectations in the National Curriculum shows the progression in children's use of calculation within the following strands 'Addition and Subtraction' and 'Multiplication and Division'. These end of year expectations will be achieved through the use of the following written methods of calculation.

Year	Addition +	Subtraction -	Multiplication x	Division ÷
1	 Knows how to add and subtract one and two digit numbers to 20 including0. Knows how to read, write and interpret mathematical statements including the addition (+) and equal to (=) sign. 	 Knows how to subtract one-digit and two-digit numbers to 20 including zero. Knows how to read, write and interpret mathematical statements involving subtraction (-) and equal (=) signs. 	 Knows that doubles are two groups of the same number and begin to multiplication. Knows that equal groups can be represented in arrays (Begin to look at other multiples, e.g. x 5). 	 Begin to understand division through grouping and sharing small quantities.
	Addition of single digits:	Subtraction of single digits	Doubling – linking to x 2	Sharing equally
	5 + 3 = 8	7 - 4 = 3 using concrete equipment:	Double 4 is 8, 4 + 4 = 8 or	Share 10 into 2 equal groups
	using concrete equipment:		4 x 2 = 8	using concrete equipment:
	(Numicon)	(Numicon)	using concrete equipment: (Numicon)	Count how many are in each set = 5
	Addition of two digit numbers to 20 and a one digit number: 12 + 5 = 17	Subtraction of a one-digit number from a two-digit number to 20.		using pictorial representations:
	using concrete equipment: (Numicon)	13 – 4 = 9 using concrete equipment: (Numicon)	using pictorial representations:	
	(Dienes)	(Dispar)	Use an array or equal groups to solve multiplication problems for multiples other than 2	<u>using abstract number sentences:</u> $10 \div 2 = 5$
	(Dienes and ten frames)	(Dienes)	5, 3 times or 5 x 3 = 15 using concrete equipment (Numicon)	Grouping How many 2s are in 10? What is 10 grouped into twos?
		(Dienes and ten frames)	I then use my 10s checker	using concrete equipment: Count how many groups = 5 (Numicon)
	(Bead string)			Model putting the 2s on top of the ten Numicon tile. How many 2s have I used? 5

2) Now, I need to draw circles around my numbers as I count in multiple of 5. E.a. '5. 10.

... using abstract mental strategies:

(Counting in multiples) 5 10 15 or 2, 4, 6 or 10, 20, 30

Count how many aroups = 5

using **pictorial** representations:

(Counters – one to many correspondence)

1) I need to write 2 as many times as it takes me to count in multiples of 2 to aet to 10 e.a. 2.4. 6. 8. 10.

2 2 2

2) Now, I need to draw circles around my numbers to count how many groups I have e.g. 1, 2, 3, 4, 5.

... using **abstract** number sentences:

 $10 \div 2 = 5$ $12 \div 3 = 4$

Pupils write number sentences to represent their workings out using the division (÷) and equals (=) signs.

Calculate mathematical statements within the **2, 5 and 10 multiplication tables** and write them using the multiplication (×) and equals (=) signs.

4 x 5 = 20 7 x 10 = 70 9 x 2 = 18

Following the concrete equipment and pictorial representations, children will use abstract mental strategies: 52 + 5 = 57 34 + 20 = 54 34 + 23 = 57 47 + 24 = 71 Addition of three single digit numbers: 4 + 7 + 6 = 17 using concrete equipment: Identify number bonds if possible, e.g. 4 and 6 make 10 / 4 + 6 = 10. Then, add on 7 (Numicon) using abstract, mental strategies: 4 + 7 + 6 = 17 Identify the two numbers that make ten and then add on the remaining number mentally. Knows efficient mental strategies including partitioning and adjusting to add numbers mentally, including: a three-digit number and ones a three-digit number and tens	Knows efficient mental strategies including partitioning and adjusting to add numbers mentally, including: • a three-digit number and ones • a three-digit number and tens	Knows the multiplication facts for the 2, 3, 4 and 8 multiplication tables. Knows how to multiply two-digit numbers times one-digit numbers, using multoiplication facts they know,	 Knows how to derive corresponding divisions for the 2,3,4,5,8,10 times table Knows how to divide using known
• a three-digit number and hundreds Knows how to add numbers with up to three digits, using formal written methods of columnar addition	a three-digit number and hundreds Knows how to subtract a two-digit or 3- digit number from a two-digit or 3 digit number using a formal written method	using efficient written methods- 'partitioning method'	multiplication tables, including for two-digit numbers divided by one-digit numbers, using mental methods, progressing to efficient written
Addition of a three-digit number and ones: 176 + 3 = 179	Subtraction of a three-digit number and ones: 136 – 4 = 132	Recall and use multiplication facts for the 3, 4 and 8 multiplication tables. 8 x 4 = 32	methods Recall and use division facts for the 3, 4 and 8 multiplication tables. 56 ÷ 8 = 7

(Dienes)

(Place value counters)

Tens	Ones
0 0 0 0	
(D) (O) (O)	
	111
	0000

Addition of a three-digit number and tens: 342 + 50 = 392

... using **concrete** equipment:

(Dienes)

... using concrete equipment:

(Dienes)

(Place value counters)

Hundreds	Tens	Ones
	(0) (0)	

Subtraction of a three-digit number and tens:

$$273 - 40 = 233$$

... using **concrete** equipment:

(Dienes)

(Place value counters)

Hundreds	Tens	Ones
	0 0 0	

Subtraction of a three-digit number and hundreds:

$$324 - 200 = 124$$

... using **pictorial** representations:

(Counters – one to many correspondence)

1) I need to write 8 out four times and count '1. 2. 3. 4' as I do this.

8

Now. I need to draw circles around my numbers and count in multiple of 8. E.g. '8. 16. 24. 32'

... using abstract mental strategies: (Counting in multiples)

3, 6, 9... or 4, 8, 12... or 8, 12, 16...

Multiplication of a two-digit number by a one-digit number.

13 x 4 = 52

 $24 \times 3 = 72$

... using **concrete** equipment:

(Dienes)

Hundreds	Tens	Ones

Count the number of ones, and then count the number of tens.

Hundreds	Tens	Ones
	40	12

40 + 12 = 52

... using **pictorial** representations:

(Counters – one to many correspondence)

1) I need to write 8 as many times as it takes me to count in multiples of 8 to get to 56 e.g. 8, 16, 24, 32, 40, 48, 56,

2) Now, I need to draw circles around my numbers to count how many groups I have e.g. 1, 2, 3, 4, 5. 6. 7.

Division of a two-digit number by a one-digit number, using known multiplication tables.

 $60 \div 3 = 20$

... using **concrete** equipment:

Sharing

Grouping (Dienes)

(Place value counters)

... using **abstract** mental strategies:

 $6 \text{ tens} \div 3 = 2 \text{ tens} = 20$

Dividing a two-digit numbers by one-digit numbers.

Addition of a three-digit number and hundreds:

306 + 300 = 606

... using **concrete** equipment:

(Dienes)

(Place value counters)

Addition of numbers with up to three digits 263 + 129 = 392

... using **concrete** equipment:

(Dienes)

Thousands	Hundreds	Tens	Ones
			•••
		II	***

... using **concrete** equipment:

(Dienes)

(Place value counters)

 $\frac{Subtraction \ {\it of} \ numbers \ with \ up \ to \ three}{digits}$

263 - 129 = 134

... using **concrete** equipment:

(Dienes)

Thousands	Hundreds	Tens	Ones
			•••

9 ones cannot be subtracted from 3 ones so exchange 1 ten for 10 ones.

Thousands	Hundreds	Tens	Ones
			•••

(Place value counters)

First calculation

Count the number of ones, and then count the number of tens.

Second calculation

Count the number of ones, and then count the number of tens.

... using **pictorial** representations:

First calculation

Count the ones first, then the tens and add the numbers together.

How many 3s goes into 5?

Exchange 10 ones for 1 ten. Thousands Hundreds Ones Tens Thousands Hundreds Ones Thousands Hundreds Tens Ones (Place value counters)

Now, subtract 9 ones.

Thousands

Thousands	Hundreds	Tens	Ones
			•
			4

Hundreds

8

21.

40 + 12 = 52

Second calculation

=	72		

Now, subtract 1 hundred.

Thousands	Hundreds	Tens	Ones
		III	•••
		III	
	I	3	4

... using abstract methods:

60

Use of partitioning method, independent of equipment and diagrams.

12

$$13 \times 4 = (10 \times 4) + (3 \times 4)$$

= 40 + 12
= 52

Thousands	Hundreds	Tens	Ones
	60 60	0 0 0	
		10 10 10	
		(0) (0)	

Tens

(0) (0)

(I) (I) (I) (0) (0)

Exchange 10 ones for 1 ten.

Hundreds

Thousands

(Place value counters)

Hundreds	Tens	Ones
(m) (m)	(0) (0)	
	000	

9 ones cannot be subtracted from 3 ones so exchange 1 ten for 10 ones.

Hundreds	Tens	Ones
w w	0 0 0	
		00000

... using **abstract** methods:

Completion of number sentences.

 $60 \div 3 = 20$

3

Progression in the formal written method for division:

Step 1

Two-digit number divided by a one-digit number – no exchanging across place value columns e.g. $84 \div 4 = 21$

- 11 -

... using **pictorial** representations:

(0) (0)

00000000

Exchange ten ones for 1 ten.

(0) (0) (0) (0) (0) (0) (0) (0)

(0) (0) (0)

0000000000

... using **abstract** mental strategies:

(Column method)

2 6 3 + 1 2 9 3 9 2

Progression in columnar addition:

Step 1 (to introduce)

2 digits - no exchanging e.g. 45 + 32

Step 2

2 digits - exchanging to the tens e.g. 43 + 18

Step 3

3 digits - exchanging to the tens e.g. 263 + 119

Now, subtract 9 ones.

Now, subtract 2 tens.

Now, subtract 1 hundred.

... using **pictorial** representations:

9 ones cannot be subtracted from 3 ones so exchange 1 ten for 10 ones and subtract 9 ones.

Now, subtract 2 tens.

Now, subtract 1 hundred.

Step 2

Two-digit number divided by a one-digit number - involving exchanging across place value columns without remainders e.g.

	1	8
3	5	² 4

	Step 4 3 digits - exchanging to the hundreds e.g. 357 + 261 Step 5 3 digits - exchanging to the thousands e.g. 847 + 931 Step 6 2 and 3 digit numbers — understand place value including the place value of columns.	using abstract mental strategies: (Column method) 5 1 2 6 3 - 1 2 9 1 3 4 Progression in columnar subtraction: Step 1 (to introduce) 2 digits - no exchanging e.g. 58 - 27 Step 2 2 digits - exchanging from tens e.g. 42 - 18 Step 3 3 digits - exchanging from tens e.g. 263 - 119 Step 4 3 digits - exchanging from hundreds e.g. 347 - 261 Step 5 2 from 3 digit numbers - understand place value including the place value of columns.		
4	 Knows efficient methods for addition and subtraction up to and including four-digit numbers. (columnar addition) Knows how to add numbers with 2 decimal places, using formal written methods (columnar addition) 	 Knows efficient methods for addition and subtraction up to and including four-digit numbers. (columnar addition) Knows how to subtract numbers with 2 decimal places, using formal written methods (columnar subtraction) 	 Knows and applies table facts for recall of multiplication and division facts for multiplication tables up to 12 × 12 Knows how to multiply two-digit and three-digit numbers by a one-digit number using formal written layout e.g. 84 x 6, 216 x 4 Knows how to multiply three-digit numbers with 1 decimal place by a one-digit number using formal written layout e.g. 134.5 x 7 	 Knows division facts for multiplication tables up to 12 x 12. Knows how to divide numbers up to 3 digits by a 1 digit number using the formal written method (no remainders)
	Addition of numbers with up to four digits:	Subtraction of numbers with up to four digits	Recall and use multiplication facts for the multiplication tables up to 12 x 12.	Recall and use division facts for the multiplication tables up to 12 x 12.

... using **concrete** equipment:

Use of place value chart and dienes (as used in Year 3).

Thousands	Hundreds	Tens	Ones

Use of place value chart and place value counters (as used in Year 3).

Thousands	Hundreds	Tens	Ones

... using **pictorial** representations:

Use of place value counters to support understanding (as used in Year 3).

... using abstract strategies:

(Column method)

four digit + four digit

... using **concrete** equipment:

Use of place value chart and dienes (as used in Year 3).

Hundreds	Tens	Ones
	Hundreds	Hundreds Tens

Use of place value chart and place value counters (as used in Year 3).

Thousands	Hundreds	Tens	Ones

... using **pictorial** representations:

Use of place value counters to support understanding (as used in Year 3).

... using abstract strategies:

four digit - four digit

four digit – three digit

Understanding place value and the place value of columns

... using **concrete** equipment:

Use of counters – one to many correspondence (as used in Year 3).

... using pictorial representations:

Use of counters – one to many correspondence (as used in Year 3).

... using abstract mental strategies:

Counting in multiples (the same as year 3 but involving all multiplication facts up to 12 x 12)

 $\label{eq:multiplication of two and three digit numbers by a one-digit number} \label{eq:multiplication of two and three digit numbers}$

216 x 4 = 864

... using concrete equipment:

(Place value counters)

Hundreds	Tens	Ones
• •	0	000000
• •	0	000000
.	0	000000
	0	000000
	•• •• •• ••	• • • • • • • • • • • • • • • • • • •

First, count how many ones there are. Pupils to count in multiples e.g. 6, 12, 18, 24. Because I have '24' ones in one place value column, I know I need to exchange 20 ones for 2 tens and count how many ones are left.

•			
Thousands	Hundreds	Tens	Ones
	• •	•	000000
	•	©	00000
	00	<u></u>	00000
		000	000000
			4

Now, count how many tens there are.

Thousands	Hundreds	Tens	Ones
	• •	0	0000
		0	
	• •	0	
	• •	000	
		6	4

... using **concrete** equipment:

Use of counters – one to many correspondence (as used in Year 3).

... using **pictorial** representations:

Use of counters – one to many correspondence (as used in Year 3).

... using **abstract** mental strategies:

Counting in multiples (the same as year 3 but involving all division facts up to 12×12)

Divide numbers with up to three-digit by a one-digit number

 $976 \div 8 = 122$

... using **concrete** equipment:

(Numicon)

How many 8s ao into 9?

Now, make 17 and check how many 8s go into 17.

four digit + three digit

Understanding place value and the place value of columns

Using 0 as a place holder

Numbers with 1 decimal place

Numbers with 2 decimal places

*Use partitioning methods to support understanding of columnar addition where appropriate.

Using 0 as a place holder

Method 1

Method 2

More efficient – Subtract 1 from both numbers in the calculation. 1999 – 474

Numbers with 1 decimal place

Numbers with 2 decimal places

Now, count how many hundreds there are. Pupils to count in multiples. E.g. '2, 4, 6, 8'

Thousands	Hundreds	Tens	Ones
		0	0000
		0	
	• •	©	
	©	000	
	8	6	l _t

... using **pictorial** representations:

First, count how many ones there are. Pupils to count in multiples e.g. 6, 12, 18, 24. Because I know I cannot have '24' ones in one place value column, I know I need to exchange 20 ones for 2 tens and count how many ones are left.

Now, count how many tens there are and how many hundreds there are. Pupils to count in multiples e.g. 2, 4, 6, 8.

Now, make 16 and check how many 8s go into 16.

... using abstract methods:

Progression in the formal written method for division:

Step 1

Two and three-digit numbers divided by a one-digit number – no exchanging across place value columns e.g. $84 \div 4 = 21$, $396 \div 3 = 132$

Step 2

Two and three-digit numbers divided by a one-digit number - involving exchanging across place value columns without remainders e.g. $138 \div 6 = 23,976 \div 8 = 122$

* Introduce the concept of a remainder.

\\(\psi_1\) \\(\psi_1\) \\\(\psi_1\) \\(\psi_1\) \\\(\psi_1\) \\\(\psi_1\) \\\(\psi_1\) \\\(\psi_1\) \\(
*Use partitioning methods to support	using abstract methods:
understanding of columnar subtraction where appropriate.	Progression in column multiplication:
арргорписс.	Step 1 (to introduce)
	two digits x one digit - no exchanging e.g. 32
	x 3
	3 2
	<u>x</u> 3
	9 6
	Step 2
	two digits x one digit – exchange to tens e.g.
	23 x 4
	(Expand to model exchanging)
	*Sometimes new arrivals arrive knowing the expanded version
	2 3 2 3
	x 4 x 4
	$\frac{\lambda}{9}$ $\frac{4}{2}$ $\frac{4}{1}$ $\frac{4}{2}$
	9 2
	Step 3
	two digits x one digit – exchange to tens and hundreds e.g. 84 x 6
	8 4 8 4
	x 6 x 6
	5 0 4 2 4
	5 2 + 4 8 0
	5 0 4
	5 0 4

			Step 4 three digits x one digit – exchange to tens e.g. 219 x 4 2 1 9	
			8 7 6 8 7 6 3 Step 5 three digits x one digit – exchange to tens, hundreds and thousands e.g. 425 x 4 4 2 5 x 4 1 8 0 0 1 2 2	
5	Knows how to add whole numbers with more than 4 digits (and with up to 3 decimal places), including using formal written methods (columnar addition)	Knows how to subtract whole numbers with more than 4 digits (and with up to 3 decimal places), including using formal written methods (columnar addition)	 Knows how to multiply numbers up to 4 digits by a 1 digit number using a formal written method e.g. 3721 x 7 Knows how to multiply one-digit numbers with up to three decimal places by whole numbers Knows how to multiply numbers up to 4 digits by 2-digit number using a formal written method e.g. 3721 x 37 	 Knows how to divide numbers up to 4 digits by a one-digit number using the formal written method and interpret remainders Knows how to divide numbers up to 4 digits with up to 3 decimal places by a one-digit number using the formal short written method
	The same as Year 4 but with larger numbers and with a greater number of decimals places -	The same as Year 4 but with larger numbers and with a greater number of decimals places -	Multiplication of a four-digit numbers by a one-digit numbers.	Division of numbers with up to four digits by a one-digit number.

up to 3 decimal places.	up to 3 decimal places.	using concrete equipment:	Consolidate understanding of using the formal written method without remainders as outlined
Continue to ensure that the use of '0' as a	Continue to ensure that the use of 'O' as a	Use of place value counters (as used in Year 4).	within Year 4.
placeholder is used to ensure pupils are confident with the exchanging and adding on process.	placeholder is used to ensure pupils are confident with the exchanging process.	using pictorial representations:	using concrete equipment:
with the exchanging and adding on process.	with the exchanging process.	Use of place value counters (as used in Year 4).	Use of Numicon (as used in Year 4)
		using abstract methods:	
		3 7 2 1 4 7 2 5	
		<u>x 7 x 9</u>	
		26047 42525	
		2 5 1 4 6 2 4	

Multiplication of a one-digit number with up to three decimal places by a one-digit number.

Develop to up to 4 digits with up to 3 decimal places by a one-digit number.

Multiplication of a four-digit number by a two-digit number.

... using abstract methods:

Progression in the formal written method for division:

Step 1

Two-digit number divided by one-digit number — with remainders

Step 2

Three-digit number divided by one-digit number – with remainders

Round up or down given the context of the problem.

	1	2	1	r	5
7	8	¹ 5	12		

Step 3

Up to four-digits with up to 3 decimal places by a one-digit number

				Ste	ep 4								
				nu	ur-digi mber - cimal	- v	ith r	emai	inders	- inte		-	а
				64	197 ÷	8	= 81	2.12	25				
					0		8	1	2		1	2	5
				8	8 6		⁶ 4	9	¹ 7		¹ 0	² 0	⁴ 0
6	 Knows how to add multi-digit numbers with more than 4 digits (with up to 3 decimal places), using formal written methods (columnar addition) 	 Knows how to subtract multi-digit numbers with more than 4 digits (with up to 3 decimal places), using formal written methods (columnar subtraction) 	up to 4 digits by a two-digit whole number using the formal written method of long multiplication	t '\ 'r '1 '1	Knows digits (two-digits (written remain fractio for the - Shori - Long	(wi git nr nde ons co t d	th up whole nethers as , or be ontexted livision	o to 3 e nu od of who oy ro t on	3 deci mber f divis le nu oundir	mal pusing ion, a mbe	places) g the sand intermediate r remains appr	by a forma terpre ainde opria	al et ers, te
	The same as Year 4 and 5 but with multi-digit numbers with more than 4 digits (and with up to 3 decimal places).	The same as Year 4 and 5 but with multi-digit numbers with more than 4 digits (and with up to 3 decimal places).	Multiplication of a four-digit number by a two-digit number.	Div and nu 41	nsolidar itten m th up to tlined i vision o d three umber: 138 ÷ : using c	of of the design	nod for decimal for the decima	r divi nal pla pers al pla 13 r e equ	with aces, by the saces, by the saces, by the saces, by the saces are th	hree- y one up to oy a	digit n -digit r o four- two-di	umbe numbe digits git w	r er as hole

	using abstract methods:
	Short Division
	2 4 3 r 7
	1 7 4 41 73 58 = 243 remainder 7 or 243 r 7 or
	243 7/17 or 243.41 or 243 (to the nearest whole number)*
	*Answer according to the question.
	Long Division
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$